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NONISOTHERMAL FLOW OF CHEMICALLY REACTING MEDIA 
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The article investigates heat exchange and resistance when non-Newtonian, chemically 
reacting liquids, whose viscosity depends on the flow rate, the temperature, the 
pressure, and the degree of conversion, flow through flat pipes. 

Flow of highly viscous materials (e.g., molten thermosets or rubber mixtures) occurs at 
high temperatures and pressures, and it is accompanied by considerable dissipative heat liber- 
ation, and also by chemical reactions (e.g., the reactions of curing or vulcanization). As 
a result of these reactions, the viscosity of the materials increases, and this imposes cer- 
tain limits on the duration of their state of viscous flow. This is of great technological 
importance because it makes it possible to establish how long the material can be permitted 
to remain in the working components of the processing equipment. 

The authors of [I] and [2] examined questions of nonisothermal flow of chemically reac- 
tive media; their solutions are correct only for the flow of Newtonian liquids, and they do 
not take the effect of the pressure on the physical properties into account. 

Below we examine nonisothermal flow of non-Newtonian liquids in a flat pipe on whose 
outer surface heat exchange with the environment proceeds according to Newton's law (the 
heat transfer coefficient and the ambient temperature are known). In consequence of the 
high viscosity of the liquid and its low thermal diffusivity (which is a characteristic fea- 
ture of many converted polymer materials), the generalized Reynolds criterion does not exceed 
10 -2 whereas the generalized Prandtl number attains 105 . Therefore, the hydrodynamic initial 
section is practically lacking, and the speed profil e at the pipe inlet may be taken to be 
fully developed, with no slip on the wall. The temperature distribution at the inlet is 
taken as uniform over the entire cross section of the channel. As the physical model of 
heat exchange of the liquid with the inner pipe walls we adopted the model of the thermal 
boundary layer [3, 4] which assumes that with high Graetz numbers, heat exchange proceeds 
only in the region near the wall, and that this region increases with increasing distance from 
the pipe inlet, until the liquid is heated completely over the entire cross section of the 
channel. It is also assumed that in the material flowing through the pipe, there occurs a 
chemical reaction of first order. The flow pattern of the liuqid in accordance with the 
adopted assumptions is shown in Fig. i~ 

Assuming that between the stress extra tensor and the strain rate tensor there exists a 
correlation in the form of Ostwald de Vila's exponential equation, we represent the system 
of differential equations describing the process of nonisothermal flow of a rheologically 
complex liquid in the Cartesian system of coordinates in the following manner: 

p Vx Ox ~ ~ Oy . dx ' O--T I--@-y Ox + 

O [ K  Ov~ n Ov~ ~ K Ov~ . - l O v y  +--3g-y [ ~ sign (---~-y) + Oy Ox ]' (1) 
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Fig. i. Flow pattern of the 
liquid in the pipe. 
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The consistency constant in Eqs. (i) and (3) depends on the temperature T, the hydrostatic 
pressure p, and the degree to which the reaction C proceeds, in accordance with the equation 

K = KoF (C) exp (- -b]  T - -  Tol) exp (s~p). (5) 

The expression for the Consistency constant in the form of relation (5) considerably compli- 
cates the mathematical model of the process of flow of.a reacting material, therefore in 
practice various criteria are widely used that make it possible to calculate the time of the 
induction period of the reaction in the course of which the material is in the state of vis- 
cous flow. The following expression [5] may serve as one of these criteria: 

ts 

J =  ! e x p [  R T  U ]  dl" (t) (6) 

To determine the length of the induction period of the reaction with the aid of Eq. (6) 
it suffices to know the values of U and J* which are determined from two experiments in iso- 
thermal regime at the temperatures Tx and T2 by the following formulas: 

U = [R ln(tit/ti~)] T1 T~ " 

j . = t i . l e x p  ( U ) 
- ~r---7 " (8) 

The inequality J~J* corresponds to the condition of maintaining the state of viscous flow 
of the material. 

The use of criterion (6) makes it possible to simplify expression (5) because during 
the induction period of the reaction it may be adopted that F(C) = i. 

In accordance with the adopted assumptions the boundary conditions have the fo~ 

= = (T~ -- T~), 

OT 
x ~ O ,  h o ~ y ~ 6 ,  T = T I ,  - - 0 ,  

Oy 

x ~ O, y = ho, Ov~ _0, 
Oy 

We introduce the following dimensionless variables: 

X = x/ho, Y = y/ho, A = 8/ho, Z =- @x/vH z, m =  1/n, Vx = v~~, 

0 = (T - -  Te)/(T~ - -  T~), f~ = b (T~-- T~), ~ = tncp, ~ -- 2/Bi, Bi = K*ho/L., 

(9) 

(10) 

(ll) 
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B r = [ K e v  /Lt(T~--Tr -~, Pr* . . . .  
" 129a t n 

In solving the stated problem, we have to replace the exponential curve describing the 
dependence K = K(T) in expression (5) by an approximating polynomial of fourth degree, us- 
ing Chebyshev's orthogonal polynomials 

4 

K = K r  + Z a'(O*)~ ] exp (sap)" (12) 

I f  we s o l v e  the  s y s t e m  o f  e q u a t i o n s  ( 1 ) - ( 3 ) ,  (12) w i t h  a v i ew to  the  bounda ry  c o n d i t i o n s  
( 9 ) - ( 1 1 )  by the  a p p r o x i m a t e  a n a l y t i c a l  method b a s e d  on a v e r a g i n g  t he  i n e r t i a l  and c o n v e c t i v e  
te rms o f  t he  e q u a t i o n s  ove r  the  h e i g h t  o f  t he  channe l  and t he  t h i c k n e s s  o f  the  t he rma l  bound-  
a r y  l a y e r ,  r e s p e c t i v e l y ,  we can o b t a i n  t h e  e x p r e s s i o n s  f o r  t he  p r o f i l e  o f  the  speed  V X and 
o f  t h e  t e m p e r a t u r e  @ i n  any c r o s s  s e c t i o n  o f  t he  channe l  and f o r  i t s  h y d r a u l i c  r e s i s t a n c e  AP 
which have  the  f o l l o w i n g  form [6]"  

9 Mi 
V x = N E m + i [(i - -  Yp+~ - -  1] (A ~ Y ~/0),  (13) 

i = 1  

= 

v~ - 

2n-k 1), 

9 M~ [(B1 + B~ 
F ~ . = N ~  

B, (1 - -  ~+~) 
q + i  

9 IVGM~ if- D~ 
F~ N "~ 

= z_~ m +  i 
i = l  

N tn 
L0 A)~+l 

m + 1 [0  - -  - - ( 1  - -  Y)'~+~] + 

- ~ - N ~  m q - i  [(I-- --1] 
i = l  

yz  2Y 
' b  - - -  -t - A1Y 2 + A I Y  + A~, 

9 

A exp(.A3q~) ( _  N ~M,)~(FI+F2)  
i ~ l  

Br F3 exp (s~p) --  2/(A q- ~) 
0 

(1/.~ Y~A), (14) 

q- B3)(1 - -  g~+i) __  (2B1 if- B2) (1 - -  e '+  i) 

sq - i  r q - i  

] _ ( B ~ A 3 ~ _  B2 A2. q_ BzA 1 

dA, 

9 Mi 
G = N ~ (~'~ ~ -= 1), ~=1 m @ i  

AZ(4A1A+3A3) 4_ (2Al+A2)(1  - e ' + i )  2AI (1 - -8  q+i) A(AxA-[-A2)] 
6 ' (s + i) (r + i) (s + 0 (q + i) s + i ' 

m + 2  s + i  

9 9 D~ 
. . . . .  +i ~ (1 - -  d+~), 

i ~ l  f = l  

q- 2 4  B~ . . . .  2 B3 = ~ " 
B1 = a~(f~ + 2a)~ ' ~ + a)~ ' (~ § a)~ ' 

(15) 

(16) 

dMi M i = M i ( %  A); D i = - d ~ - - ,  e =  1 - -&,  s - r e + l ,  r = m + 2 ,  q = m q -  3. 

The dependence  o f  t h e  r e d u c e d  l e n g t h  on the  t h i c k n e s s  of  t he  t h e r m a l  bounda ry  l a y e r  i s  
found from the  e q u a t i o n  

a F1 q- F~ 
( J' Br F~ exp (s~p) - -  2/(f3 q- A) 

Z 0. 25 dA. 
0 

The obtained expressions make it possible to describe the development of the speed pro- 
file as well as of the temperature profile along the pipe, and consequently, to determine 
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Fig. 2. Dependence of the criterion J* on the flow rate 
Q with different initial temperatures of the liquid (Bi = 
17): i) Ti = 80~ 2) i00; 3) 120; J*, sec; Q, cm3/sec. 

Fig. 3. Determination of the range of permissible values 
of the thermal and hydrodynamic flow parameters of a chemi- 
cally reactive liquid: i) T i = 80~ 2) i00; 3) 120; AP, 
N/m 2 . 

the temperature-time regime of affecting an arbitrary microvolume of material flowing in the 
pipe. If we know the dependence T = T(t) for an arbitrary elementary volume of the medium, 
we can then calculate the value of the integral (6) for it. By comparing the obtained value 
of the criterion with its permissible limit value calculated by expression (7), we determine 
the possibility of the given microvolume of the medium remaining in the state of viscous 
flow. 

As a practical application of the obtained results we will examine the following prob- 
lem. A chemically reactive material, whose consistency constant depends on temperature and 
pressure in accordance with Eq. (5), is fed into a cavity with volume V through a flat pipe 
whose length is L = 150 mm and height H = 3 ram. The flowing material has the following 
rheological and thermophysical characteristics: 

N �9 sec n 
KeIT=aZaoK = 5 5 . 1 0 3  m 2 , n = 0 . 2 6 ,  b = 0 . 0 0 7 6  deg  - i ,  

P = 1 1 5 0 k g / m  3, XI = 0 . 2 6  W / m '  deg,  U = 60  ~ / m o l e ,  

J *  = 3 . 5 . 1 0  -7  see,  ~ = 0 . 6 . 1 0  -8 Pa - i  

It is indispensable to establish the region of values of flow rate Q, initial tempera- 
ture Ti, and pressure gradient AP along the channel for which it may be asserted that no par- 
ticles of the medium converted to the solid state as a result of a chemical reaction had 
reached the cavity. Here we determine the time of filling the cavity tfi I = V/Q, then the 
time of dwelling of elementary volumes of the medium, situated at different distances from 

h AI:, 
the inner pipe wall, in the pipe ~p=E ~ where k is the number of sections of the channel 

7=i 4r 
within which the temperature and speed of an elementary volume of the medium are considered 
constant and are calculated by the formulas 

o/+ t + ~ j  T/+~ + Tj 
A l j =  x/+ 1 xj ,  ~ v J - -  2 ' T a v - -  2 ' 

vj+x, Tj+x, vj, Tj are the magnitudes of the longitudinal component of speed and temperature 
at the end xj+: and at the beginning xj of each section, calculated by the above formulas. 

Then for an elementary volume of material, whose dwelling time in the pipe is equal to 
the time of filling the cavity, we determine by a numerical method the magnitude of the in- 
tegral (5) which is compared with its limit value J*. If J does not exceed J*, the cavity 
is filled with material that is exclusively in the state of viscous flow. 

Figure 2 shows the results of numerical calculations by the presented method. Above 
the dashed line, which corresponds to the limit value of the criterion J*, there is the re- 
gion of impermissible values of volume velocity of flow of the medium and of its initial tem- 
perature at the inlet to the channel because there it is possible that cured particles of 
material reach the cavity. 
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Using the data of Fig. 2, and also taking Eq. (16) into account, we can plot the volume- 
flow rate characteristic of the pipe--cavity system taking into account the rheokinetics of 
flow of the material as well as the fact that it is not isothermal. An example of plotting 
such a characteristic is presented in Fig. 3. To the right of the line I--I there is the 
range of permissible values of flow rate and pressure gradient along the pipe whose joint 
realization ensures that only material in the state of viscous flow reaches the cavity. 

The obtained results may find application in engineering calculations of the optimum op- 
erating parameters of equipment converting chemically reactive materials. 

NOTATION 

Ko, Ke, values of the consistency constant at atmospheric pressure and at the tempera- 
tures To and Te, respectively; n, flow index; b, sl, temperature and baric coefficients of 
viscosity, respectively; %f, af, p, v, thermal conductivity, thermal diffusivity, density, 
and mean flow rate of the liquid, respectively; As, thermal conductivity of the material of 
the pipe; K*, heat-transfer coefficient from the inner wall surface of the pipe to the en- 
vironment; ai, coefficients of the Fourier expansion of the exponential curve into a series 
with respect to the orthogonal Chebyshev polynomials; ae, heat-transfer coefficients from 
the outer pipe surface to the environment with temperature Te; U, activation energy of the 
chemical reaction; F(C), function taking into account the effect of the degree of the course 
of the reaction on the viscosity of the liquid; ti, til, ti2, time of the induction period of 
the reaction; R, universal gas constant. 
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